ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ ОПТИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ НА ОСНОВЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Методические указания к лабораторным работам по курсу «Оптоинформационные технологии и системы»

Кириленко М.С.

Содержание

Введение	3
Краткие теоретические сведения	
•	
Задание	7
Варианты	8

Введение

Данная лабораторная работа содержит сведения о применении быстрого преобразования Φ урье (БП Φ) и его адаптации для оптических систем.

Необходимо реализовать оптическое преобразование Фурье, используя алгоритм БПФ и стандартные методы численного интегрирования, сравнить результаты и убедиться, что они совпадают.

Также необходимо изучить некоторые свойства преобразования Фурье с помощью аналитических выводов и численного моделирования.

Краткие теоретические сведения

Рассматривается оптическая система, изображённая на рисунке 1.

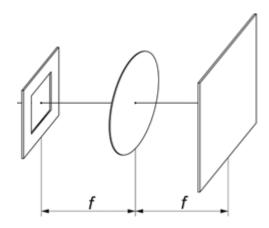


Рисунок 1 – Схема оптической системы

Будем считать, что на вход системе падает плоская волна, равная единице. Квадратная апертура ограничивает входной пучок, так что мы считаем его равным нулю за пределами апертуры. В отверстии апертуры находится дифракционный оптический элемент (ДОЭ). Линза расположена между апертурой и экраном на фокусном расстоянии от них.

Для упрощения будем рассматривать только те случаи, когда $\lambda f = 1$, где λ – длина волны, f – фокусное расстояние линзы. Тогда оператор распространения запишется в виде финитного преобразования Фурье:

$$F_a(u,v) = \mathcal{F}_a[f(x,y)](u,v) = \iint_{[-a:a]^2} f(x,y)e^{-2\pi i(ux+vy)} dxdy,$$
 (1)

где f(x,y) — финитная функция (supp $f \subseteq [-a;a]^2$), задающая вид оптического распределения после прохождения ДОЭ, $[-a;a]^2$ — квадратная область внутри апертуры, $F_a(u,v)$ — спектр, \mathcal{F}_a — оператор финитного преобразования Фурье.

Обычное преобразование Фурье отличается от финитного лишь тем, что интегрирование в последнем случае осуществляется по конечной области.

Так как входное распределение перед апертурой равно единице, а при прохождении через ДОЭ эффекты дифракции упрощаются до обыкновенного умножения, то входное распределение f(x,y) будет совпадать с функцией пропускания ДОЭ.

Важно: мы считаем толщину апертуры и ДОЭ в приближении бесконечно малой величиной.

Прежде чем приступать к двумерной задаче (т.к. функции зависят от двух переменных), рассмотрим более простую – одномерную:

$$F_a(u) = \mathcal{F}_a[f(x)](u) = \int_{-a}^{a} f(x)e^{-2\pi i u x} dx.$$
 (2)

Для расчёта такого преобразования можно воспользоваться алгоритмом быстрого преобразование Фурье (БПФ). Он не рассматривается в данном пособии, поэтому можно использовать готовую реализацию. Однако, при реализации финитного преобразования Фурье по формуле (2) через БПФ следует учитывать нижеописанные замечания.

Предположим, что после дискретизации функции f(x) получается вектор **f** размерности N:

$$\mathbf{f} = (f_0 \quad f_1 \quad \dots \quad f_{N-1})^T \tag{3}$$

где T — символ транспонирования. Здесь и далее подразумевается, что количество отсчётов чётно.

Классически дискретное преобразования Фурье записывается для периодических функций в виде:

$$\mathbf{F} = \left(\sum_{n=0}^{N-1} f_n e^{-\frac{2\pi i}{N}kn}\right)_{k=0,1,\dots,N-1},\tag{4}$$

где \mathbf{F} — спектр дискретного преобразования Фурье. Формула (4) аппроксимирует следующий интеграл:

$$\int_0^{2a} f(x)e^{-2\pi i ux} dx. \tag{5}$$

Иными словами, классическое преобразование Фурье подразумевает, что пределы интегрирования начинаются с нуля, в то время как наше преобразование Фурье центрировано.

Если продолжить функцию f(x) с периодом 2a на всю числовую прямую, то для того чтобы дискретное преобразование (4) аппроксимировало интеграл (2), а не (5), необходимо поменять местами первую и вторую половины компонентов вектора (3).

Замечание: классическое прямое преобразование Фурье (4) не учитывает шаг дискретизации h_x , поэтому после применения операции БПФ необходимо умножить результат на h_x .

После выполнения БПФ мы получаем вектор значений, но он будет определён для функции, заданной на промежутке [0;2b], где b предстоит определить. Поскольку нас интересует центрированная система, необходимо снова поменять местами первую и вторую половины компонентов полученного вектора, получив итоговый вектор \mathbf{F} . Тогда область задания функции $F_a(u)$ изменится на [-b;b].

При использовании БПФ будет выполняться соотношение: $h_x h_u = 1/N$, где h_u — шаг дискретизации по оси u. Отсюда видно, что:

$$b = N/4a. (6)$$

Из формулы (6) следует: чем больше точек дискретизации взять, тем больше будет область задания функции $F_a(u)$. При малых N аппроксимация будет плохой, а при больших N промежуток [-b;b] может быть настолько большим, что важных деталей функции мы просто не увидим.

В этом случае поступают следующим образом: исходный вектор \mathbf{f} и слева, и справа дополняют одинаковым количеством нулей, зачастую много большим, чем N. Будем считать, что после дополнения нулями вектор стал иметь размерность M. После

выполнения алгоритма **F** будет также иметь размерность M, а функция $F_a(u)$ по-прежнему определена на промежутке [-b;b].

Если же теперь «вырезать» центральную часть вектора \mathbf{F} , оставив N элементов, то область задания функции $F_a(u)$ станет равной $[-\tilde{b};\tilde{b}]$, где

$$\tilde{b} = N^2 / 4aM. \tag{7}$$

Таким образом, мы получаем алгоритм реализации оптического финитного преобразования Фурье через использование БПФ:

- 1. Провести дискретизацию входной функции f(x) в вектор **f** с размерностью N.
- 2. Дополнить вектор \mathbf{f} и слева, и справа необходимым числом нулей до размерности M.
- 3. Разбить вектор \mathbf{f} на две половины и поменять их местами.
- 4. Выполнить БПФ от **f** и умножить результат на шаг h_x , получив вектор **F**.
- 5. Разбить вектор \mathbf{F} на две половины и поменять их местами.
- 6. «Вырезать» центральную часть вектора \mathbf{F} , оставив N элементов.
- 7. Пересчитать область задания функции $F_a(u)$ по формуле (7).

Если область $\left[-\tilde{b};\tilde{b}\right]$ оказалась слишком большой (полезная часть спектра плохо видна) или слишком маленькой (спектр не умещается), можно соответственно изменить число дополняемых нулей на шаге 2.

Замечание: некоторые реализации БПФ не требуют, чтобы число M было целой степенью двойки, а сами добавляют дополнительные нули, нарушая симметрию. Это может привести к появлению в результатах расчёта неправильного фазового набега. Так что **необходимо удостовериться**, что число M является степенью двойки.

Вернёмся теперь к формуле (1). Поскольку в формуле имеется двумерная входная функция и двумерное преобразование Фурье, то после дискретизации функций мы будем получать матрицу **f**. Алгоритм нахождения преобразования Фурье от неё можно свести к одномерному случаю: необходимо применить вышеописанный алгоритм к каждой строке этой матрицы, получив новую матрицу, а затем применить его к каждому столбцу полученной матрицы.

Примечание: седьмой шаг, нахождение области задания $F_a(u,v)$, следует выполнить только один раз.

Задание

- 1. Реализовать одномерное финитное преобразование Фурье с помощью применения алгоритма БПФ.
- 2. Построить график гауссова пучка e^{-x^2} . Здесь и далее для каждого графика следует строить отдельно графики амплитуды и фазы. Амплитуда находится как модуль каждого значения функции, фаза как аргумент (или с помощью функции atan2).
- 3. Убедиться в правильности реализации преобразования, подав на вход гауссов пучок e^{-x^2} собственную функцию преобразования Фурье. На выходе тоже должен получиться гауссов пучок (построить график на правильной области определения $[-\tilde{b}, \tilde{b}]$). Рекомендуемая входная область: [-a, a] = [-5, 5].
- 4. Реализовать финитное преобразование Фурье стандартным методом численного интегрирования (например, методом прямоугольников). Важно: необходимо вычислить интеграл для каждого дискретного значения *u*, чтобы получить результат в виде вектора. На вход преобразования вновь следует подавать гауссов пучок.
- 5. Построить результаты двух разных реализаций преобразования на одном изображении (одно для амплитуды, одно для фазы) и убедиться, что они совпадают.
- 6. Используя первую реализацию преобразования, подать на вход световое поле, отличное от гауссова пучка, в соответствии со своим вариантом. Построить графики самого пучка и результата преобразования.
- 7. Рассчитать аналитически результат преобразования своего варианта поля и построить график на одной системе координат с результатом, полученным в предыдущем пункте.
- 8. Дополнительное задание: выполнить пункты 1-7 для двумерного случая. Графики изменятся на двумерные изображения, одномерные функции следует заменить на двумерные, равные произведению соответствующих одномерных функций. Например, гауссов пучок поменяется на $e^{-x^2-y^2}$.

Варианты

$N_{\underline{0}}$	Входное поле	Примечание
1	$\operatorname{sinc}(\pi x)$	Для аналитики применить не финитное
		преобразование. Использовать значения
		интегрального синуса, либо другие свойства
		преобразования Фурье.
2	$1/(1+x^2)$	Для аналитики применить не финитное
		преобразование. Использовать лемму Жордана и
		теорему о вычетах.
3	$\exp(2\pi i x) + \exp(-5\pi i x)$	Для аналитики применить финитное
		преобразование.
4	rect(x/4)	Для аналитики применить не финитное
		преобразование.
5	$x^3 \exp(-x^2)$ $(4x^2 - 2)\exp(-x^2/2)$	Для аналитики применить не финитное
		преобразование. Использовать свойства
		преобразования Фурье.
6		Для аналитики применить не финитное
		преобразование. Можно использовать понятие
		полиномов Эрмита и мод Гаусса-Эрмита.
7	x^2	Для аналитики применить финитное
7		преобразование. Использовать свойства
		преобразования Фурье.
	$\sin(3\pi x)$ $\operatorname{rect}((x-1)/4)$	Для аналитики применить финитное
8		преобразование. Использовать свойства
		преобразования Фурье.
9		Для аналитики применить не финитное преобразование.
		1 1
10	$\exp(2ix^3)$	Для аналитики применить не финитное
		преобразование. Использовать понятие функции
		Эйри или луча Эйри и свойства преобразования
		Фурье.