import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env class AntEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'ant.xml', 5) utils.EzPickle.__init__(self) def step(self, a): xposbefore = self.get_body_com("torso")[0] self.do_simulation(a, self.frame_skip) xposafter = self.get_body_com("torso")[0] forward_reward = (xposafter - xposbefore)/self.dt ctrl_cost = .5 * np.square(a).sum() contact_cost = 0.5 * 1e-3 * np.sum( np.square(np.clip(self.sim.data.cfrc_ext, -1, 1))) survive_reward = 1.0 reward = forward_reward - ctrl_cost - contact_cost + survive_reward state = self.state_vector() notdone = np.isfinite(state).all() \ and state[2] >= 0.2 and state[2] <= 1.0 done = not notdone ob = self._get_obs() return ob, reward, done, dict( reward_forward=forward_reward, reward_ctrl=-ctrl_cost, reward_contact=-contact_cost, reward_survive=survive_reward) def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[2:], self.sim.data.qvel.flat, np.clip(self.sim.data.cfrc_ext, -1, 1).flat, ]) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-.1, high=.1) qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.distance = self.model.stat.extent * 0.5