Files
LifeStats/web/chart_views.py
2018-12-27 14:44:21 +04:00

191 lines
5.7 KiB
Python

import io
from collections.__init__ import defaultdict
from datetime import timedelta
import numpy as np
from django.http import HttpResponse
from django.views.generic import DetailView
from web.models import User, ActivityLog, Activity
class UserChartsPie(DetailView):
model = User
pk_url_kwarg = 'user_id'
def pie_chart(self, plt, ax, logs):
total_time = defaultdict(float)
for log in logs:
total_time[str(log.activity)] += (log.end_time - log.start_time).total_seconds()
sectors = sorted(list(total_time.items()), key=lambda x: x[1])
ax.pie(x=[i[1] for i in sectors], labels=[i[0] for i in sectors], autopct='%1.0f%%')
def average_chart(self, plt, ax, logs):
interval = timedelta(minutes=10)
interval_count = timedelta(days=1) // interval
intervals = [(interval * i) / timedelta(hours=1) for i in range(interval_count)]
distr_by_activity = {}
for i in logs:
if i.activity not in distr_by_activity:
distr_by_activity[i.activity] = np.zeros(interval_count)
for i in logs:
day = i.start_time.replace(hour=0, minute=0, second=0, microsecond=0)
t = i.start_time
t_i = (t - day) // interval
while t < i.end_time:
distr_by_activity[i.activity][t_i] += 1
t += interval
t_i = (t_i + 1) % interval_count
for activity, distr in distr_by_activity.items():
ax.plot(intervals, distr, label=f'{activity}')
distr[0] = 0
distr[-1] = 0
ax.fill(intervals, distr, alpha=0.2)
plt.legend()
def render_to_response(self, context, **response_kwargs):
logs = ActivityLog.objects.filter(user=self.object).all()
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(12, 16), dpi=100)
ax = fig.add_subplot(221)
self.pie_chart(plt, ax, logs)
ax = fig.add_subplot(212)
self.average_chart(plt, ax, logs)
buf = io.BytesIO()
fig.savefig(buf, format='png')
b = buf.getvalue()
return HttpResponse(b, content_type='image/png')
class UserChartsActivityAll(DetailView):
model = User
pk_url_kwarg = 'user_id'
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context['activity'] = Activity.objects.filter(id=self.kwargs['activity_id']).first()
return context
def bar_chart(self, plt, ax, logs, day_l, day_r, day_count, days):
day_seconds = np.zeros(day_count)
for log in logs:
for i, day in enumerate(days):
l = max(log.start_time, day)
r = min(log.end_time, day + timedelta(days=1))
if r > l:
day_seconds[i] += (r - l).total_seconds()
day_hours = day_seconds / timedelta(hours=1).total_seconds()
ax.bar(days, day_hours)
ax.hlines([np.mean(day_hours)], day_l, day_r, color='orange', lw=3)
plt.xticks(days, [f'{i:%m-%d}' for i in days], rotation=60)
plt.ylabel('кол-во часов')
def tracker_chart(self, plt, ax, logs, day_l, day_r, day_count, days):
ys = []
widths = []
lefts = []
for log in logs:
for i, day in enumerate(days):
l = max(log.start_time, day)
r = min(log.end_time, day + timedelta(days=1))
if r > l:
ys.append(day)
widths.append((r - l) / timedelta(hours=1))
lefts.append((l - day) / timedelta(hours=1))
ax.barh(y=ys, width=widths, left=lefts, zorder=2)
plt.xlim(0, 24)
plt.xticks(range(24), [f'{i:02d}:00' for i in range(24)])
plt.yticks(days, [f'{i:%m-%d}' for i in days])
plt.grid(True, zorder=1)
def average_chart(self, plt, ax, logs, day_l, day_r, day_count, days):
pass
def render_to_response(self, context, **response_kwargs):
logs = ActivityLog.objects.filter(user=self.object).all()
day_r = logs[-1].end_time.replace(hour=0, minute=0, second=0, microsecond=0)
day_l = max(
logs[0].start_time.replace(hour=0, minute=0, second=0, microsecond=0),
day_r - timedelta(days=13)
)
day_count = (day_r - day_l) // timedelta(days=1) + 1
days = [day_l + timedelta(days=1) * i for i in range(day_count)]
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8, 12), dpi=100)
ax = fig.add_subplot(311)
self.bar_chart(plt, ax, logs, day_l, day_r, day_count, days)
ax = fig.add_subplot(312)
self.tracker_chart(plt, ax, logs, day_l, day_r, day_count, days)
ax = fig.add_subplot(313)
self.average_chart(plt, ax, logs, day_l, day_r, day_count, days)
buf = io.BytesIO()
fig.savefig(buf, format='png')
b = buf.getvalue()
return HttpResponse(b, content_type='image/png')
class UserActivityChartsTracker(DetailView):
model = User
pk_url_kwarg = 'user_id'
def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context['activity'] = Activity.objects.filter(id=self.kwargs['activity_id']).first()
return context
def render_to_response(self, context, **response_kwargs):
print('start_tracker')
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(16, 6), dpi=100)
ax = fig.add_subplot(111)
logs = list(ActivityLog.objects.filter(user=self.object, activity=context['activity']).order_by('start_time').all())
day_r = logs[-1].end_time.replace(hour=0, minute=0, second=0, microsecond=0)
day_l = max(
logs[0].start_time.replace(hour=0, minute=0, second=0, microsecond=0),
day_r - timedelta(days=14)
)
day_count = (day_r - day_l) // timedelta(days=1) + 1
days = [day_l + timedelta(days=1) * i for i in range(day_count)]
buf = io.BytesIO()
fig.savefig(buf, format='png')
b = buf.getvalue()
return HttpResponse(b, content_type='image/png')