max distance is now weighted by hours

This commit is contained in:
2018-11-14 19:57:35 +04:00
parent d288cf4f9e
commit 6f06b10388
7 changed files with 67 additions and 56 deletions

View File

@@ -10,6 +10,7 @@ numpy = "*"
pulp = "*" pulp = "*"
pandas = "*" pandas = "*"
xlsxwriter = "*" xlsxwriter = "*"
xlrd = "*"
[dev-packages] [dev-packages]

10
Pipfile.lock generated
View File

@@ -1,7 +1,7 @@
{ {
"_meta": { "_meta": {
"hash": { "hash": {
"sha256": "707c3088da92d8c5a3d4d4ace89682526e43dfa8f0104d4709bd0a80453c41cc" "sha256": "07c3eee4c958d61e36cca97fe6439457f2a852af45d00c03c21ef593b27fb406"
}, },
"pipfile-spec": 6, "pipfile-spec": 6,
"requires": { "requires": {
@@ -148,6 +148,14 @@
], ],
"version": "==1.11.0" "version": "==1.11.0"
}, },
"xlrd": {
"hashes": [
"sha256:83a1d2f1091078fb3f65876753b5302c5cfb6a41de64b9587b74cefa75157148",
"sha256:8a21885513e6d915fe33a8ee5fdfa675433b61405ba13e2a69e62ee36828d7e2"
],
"index": "pypi",
"version": "==1.1.0"
},
"xlsxwriter": { "xlsxwriter": {
"hashes": [ "hashes": [
"sha256:7cc07619760641b67112dbe0df938399d4d915d9b9924bb58eb5c17384d29cc6", "sha256:7cc07619760641b67112dbe0df938399d4d915d9b9924bb58eb5c17384d29cc6",

12
run.sh
View File

@@ -1,12 +0,0 @@
#!/usr/bin/env zsh
set euxo PIPEFAIL
export PIPENV_VENV_IN_PROJECT=1
export PYTHONPATH=src/
git pull
pipenv install
pipenv run python3.7 src/manage.py runserver 2716

View File

@@ -55,8 +55,8 @@ class LPSolver:
[self._distance_name_to_id[t.distance.name] for t in self.tasks], [self._distance_name_to_id[t.distance.name] for t in self.tasks],
dtype=int) dtype=int)
self._expected_worker_ratio = np.array([w.hours for w in self.workers], dtype=float) self._worker_hours = np.array([w.hours for w in self.workers], dtype=float)
self._expected_worker_ratio /= np.sum(self._expected_worker_ratio) self._expected_worker_ratio = self._worker_hours / np.sum(self._worker_hours)
self._expected_worker_km = self._expected_worker_ratio * np.sum(self._task_kms) self._expected_worker_km = self._expected_worker_ratio * np.sum(self._task_kms)
self._expected_worker_sp = self._expected_worker_ratio * np.sum(self._task_sps) self._expected_worker_sp = self._expected_worker_ratio * np.sum(self._task_sps)
@@ -83,75 +83,78 @@ class LPSolver:
# Worker x Task binary choice matrix # Worker x Task binary choice matrix
self._worker_task_choices = np.zeros((self.worker_n, self.task_n), dtype=object) self._worker_task_choices = np.zeros((self.worker_n, self.task_n), dtype=object)
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
for t_i in range(self.task_n): for task_id in range(self.task_n):
self._worker_task_choices[w_i, t_i] = \ self._worker_task_choices[worker_id, task_id] = \
pulp.LpVariable(f'worker_task_choice[{w_i},{t_i}]', None, None, pulp.LpBinary) pulp.LpVariable(f'worker_task_choice[{worker_id},{task_id}]', None, None, pulp.LpBinary)
# Worker task counts # Worker task counts
worker_task_counts = np.zeros(self.worker_n, dtype=object) worker_task_counts = np.zeros(self.worker_n, dtype=object)
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
worker_task_counts[w_i] = pulp.lpSum(self._worker_task_choices[w_i, :]) worker_task_counts[worker_id] = pulp.lpSum(self._worker_task_choices[worker_id, :])
# Restriction: one worker per task # Restriction: one worker per task
for t_i in range(self.task_n): for task_id in range(self.task_n):
self.lp_problem += pulp.lpSum(self._worker_task_choices[:, t_i]) == 1 self.lp_problem += pulp.lpSum(self._worker_task_choices[:, task_id]) == 1
# Worker x Distance task counts # Worker x Distance task counts
worker_distance_task_counts = np.zeros((self.worker_n, self.distance_n), dtype=object) worker_distance_task_counts = np.zeros((self.worker_n, self.distance_n), dtype=object)
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
for t_i in range(self.task_n): for task_id in range(self.task_n):
d_i = self._task_distances[t_i] distance_id = self._task_distances[task_id]
worker_distance_task_counts[w_i, d_i] += self._worker_task_choices[w_i, t_i] worker_distance_task_counts[worker_id, distance_id] += self._worker_task_choices[worker_id, task_id]
# Worker x Distance binary choice matrix # Worker x Distance binary choice matrix
worker_distance_choices = np.zeros((self.worker_n, self.distance_n), dtype=object) worker_distance_choices = np.zeros((self.worker_n, self.distance_n), dtype=object)
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
for d_i in range(self.distance_n): for distance_id in range(self.distance_n):
worker_distance_choices[w_i, d_i] = \ worker_distance_choices[worker_id, distance_id] = \
pulp.LpVariable(f'DistanceChoice[w{w_i},d{d_i}]', None, None, pulp.LpBinary) pulp.LpVariable(f'DistanceChoice[w{worker_id},d{distance_id}]', None, None, pulp.LpBinary)
# Restriction: Distance choices are an upper bound on Task choices # Restriction: Distance choices are an upper bound on Task choices
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
for t_i in range(self.task_n): for task_id in range(self.task_n):
d_i = self._task_distances[t_i] distance_id = self._task_distances[task_id]
self.lp_problem += worker_distance_choices[w_i, d_i] >= self._worker_task_choices[w_i, t_i] self.lp_problem += worker_distance_choices[worker_id, distance_id] >= self._worker_task_choices[
worker_id, task_id]
# Restriction: km, sp and agg diffs are in specified intervals # Restriction: km, sp and agg diffs are in specified intervals
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
worker_km = pulp.lpDot(self._worker_task_choices[w_i, :], self._task_kms) worker_km = pulp.lpDot(self._worker_task_choices[worker_id, :], self._task_kms)
self.lp_problem += worker_km >= self._expected_worker_km[w_i] - max_km_diff self.lp_problem += worker_km >= self._expected_worker_km[worker_id] - max_km_diff
self.lp_problem += worker_km <= self._expected_worker_km[w_i] + max_km_diff self.lp_problem += worker_km <= self._expected_worker_km[worker_id] + max_km_diff
worker_sp = pulp.lpDot(self._worker_task_choices[w_i, :], self._task_sps) worker_sp = pulp.lpDot(self._worker_task_choices[worker_id, :], self._task_sps)
self.lp_problem += worker_sp >= self._expected_worker_sp[w_i] - max_sp_diff self.lp_problem += worker_sp >= self._expected_worker_sp[worker_id] - max_sp_diff
self.lp_problem += worker_sp <= self._expected_worker_sp[w_i] + max_sp_diff self.lp_problem += worker_sp <= self._expected_worker_sp[worker_id] + max_sp_diff
worker_agg = pulp.lpDot(self._worker_task_choices[w_i, :], self._task_aggs) worker_agg = pulp.lpDot(self._worker_task_choices[worker_id, :], self._task_aggs)
self.lp_problem += worker_agg >= self._expected_worker_agg[w_i] - max_agg_diff self.lp_problem += worker_agg >= self._expected_worker_agg[worker_id] - max_agg_diff
self.lp_problem += worker_agg <= self._expected_worker_agg[w_i] + max_agg_diff self.lp_problem += worker_agg <= self._expected_worker_agg[worker_id] + max_agg_diff
# Restriction: distance counts are below max # Restriction: distance counts are below max
worker_distance_counts = np.zeros(self.worker_n, dtype=object) worker_distance_counts = np.zeros(self.worker_n, dtype=object)
for w_i in range(self.worker_n): worker_distance_count_weight = self._worker_hours / np.max(self._worker_hours)
worker_distance_counts[w_i] = pulp.lpSum(worker_distance_choices[w_i, :]) for worker_id in range(self.worker_n):
self.lp_problem += worker_distance_counts[w_i] <= max_distance_count worker_distance_counts[worker_id] = pulp.lpSum(worker_distance_choices[worker_id, :])
worker_max_distance_count = max_distance_count * worker_distance_count_weight[worker_id]
self.lp_problem += worker_distance_counts[worker_id] <= worker_max_distance_count
# Restriction: avg distance count is below max too # Restriction: avg distance count is below max too
worker_avg_dist_count = pulp.lpSum(worker_distance_counts) / self.worker_n worker_avg_dist_count = pulp.lpSum(worker_distance_counts) / self.worker_n
self.lp_problem += worker_avg_dist_count <= avg_distance_count self.lp_problem += worker_avg_dist_count <= avg_distance_count
# Restriction: task counts are in specified intervals # Restriction: task counts are in specified intervals
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
self.lp_problem += worker_task_counts[w_i] <= max_task_count self.lp_problem += worker_task_counts[worker_id] <= max_task_count
# Restriction: critical distances # Restriction: critical distances
for w_i in range(self.worker_n): for worker_id in range(self.worker_n):
for cd_i in range(self.critical_distances_n): for critical_distance_id in range(self.critical_distances_n):
d_i = self._critical_distances[cd_i] distance_id = self._critical_distances[critical_distance_id]
bound = self._critical_distance_bounds[cd_i] bound = self._critical_distance_bounds[critical_distance_id]
self.lp_problem += worker_distance_task_counts[w_i, d_i] <= bound self.lp_problem += worker_distance_task_counts[worker_id, distance_id] <= bound
# Restrictions: params # Restrictions: params
self.lp_problem += max_km_diff <= self.param_set.restriction_max_km_diff.value self.lp_problem += max_km_diff <= self.param_set.restriction_max_km_diff.value

View File

@@ -84,6 +84,8 @@
method="post"> method="post">
{% csrf_token %} {% csrf_token %}
<input class="btn btn-primary" type="submit" value="Cоздать">
<div class="card"> <div class="card">
<div class="card-header"> <div class="card-header">
<a class="card-link" data-toggle="collapse" href="#params-table-collapse"> <a class="card-link" data-toggle="collapse" href="#params-table-collapse">

View File

@@ -13,7 +13,7 @@ import datetime
import os import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...) # Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Quick-start development settings - unsuitable for production # Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/

9
update.sh Executable file
View File

@@ -0,0 +1,9 @@
#!/usr/bin/env zsh
set euxo PIPEFAIL
git pull
pipenv install
pipenv run python3.7 src/manage.py migrate